Rough fractional integral operators and beyond Adams inequalities
نویسندگان
چکیده
منابع مشابه
Some Estimates for Rough Multilinear Fractional Integral Operators and Rough Multi-sublinear Fractional Maximal Operators
It is well known that, for the purpose of researching non-smoothness partial differential equation, mathematicians pay more attention to the singular integrals with rough kernel. Moreover, the fractional type operators and their weighted boundedness theory play important roles in harmonic analysis and other fields, and the multilinear operators arise in numerous situations involving product-lik...
متن کاملOn weighted inequalities for certain fractional integral operators
and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...
متن کاملGeneralized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملCertain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators
In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...
متن کاملRough Marcinkiewicz Integral Operators
We study the Marcinkiewicz integral operator M f(x) = ( ∫∞ −∞ | ∫ |y|≤2t f (x − (y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where is a polynomial mapping from Rn into Rd and Ω is a homogeneous function of degree zero on Rn with mean value zero over the unit sphere Sn−1. We prove an Lp boundedness result of M for rough Ω. 2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2019
ISSN: 1331-4343
DOI: 10.7153/mia-2019-22-50